When you shine a powerful laser into the sky, someone is likely to notice.
That someone is likely to be the Federal Aviation Administration, who, for some reason, seem to be concerned about the possibility of our illuminating a passenger airliner with an AO laser.
We currently use laser spotters to insure this does not happen. Yes, some poor soul must sit outside all night long and watch the skies for aircraft near the beams. When the weather is nice this is not a problem. It is seldom that nice, a bitterly cold wind is the usual condition. I have done this duty, for about an hour, and really do not need to do it again. After a night in the cold, is a person really an alert observer? An automated system that removes the human element from the equation is really a better solution.
Enter TBAD, the Transponder Based Aircraft Detector. All commercial and most civil aircraft carry a 1090MHz ADS-B transponder that identifies the aircraft and provides basic data. The transponder is part of an aircraft tracking system now used by air traffic control centers around the world to supplement, or in some cases replace, radar systems. An idea… Create a directional antenna that can determine if a 1090MHz transmitter is in the beam of the antenna and mount that antenna to the telescope. With such a system we can detect an aircraft approaching our beam and shutter the laser. The idea was conceived by Tom Murphy and Bill Coles at the University of California San Diego. Thus TBAD can alternately mean Tom and Bill’s Aircraft Detector.