Astronomers Shed Light on Formation of Black Holes and Galaxies

W. M. Keck Observatory press release

Stars forming in galaxies appear to be influenced by the supermassive black hole at the center of the galaxy, but the mechanism of how that happens has not been clear to astronomers until now.

“Supermassive black holes are captivating,” says lead author Shelley Wright, a University of California San Diego Professor of Physics. “Understanding why and how galaxies are affected by their supermassive black holes is an outstanding puzzle in their formation.”

Image of the quasar host galaxy from the UC San Diego research team’s data. The distance to this quasar galaxy is ~9.3 billion light years. Credit: A. Vayner and team
In a study published today in The Astrophysical Journal, Wright, graduate student Andrey Vayner, and their colleagues examined the energetics surrounding the powerful winds generated by the bright, vigorous supermassive black hole (known as a “quasar”) at the center of the 3C 298 host galaxy, located approximately 9.3 billion light years away.

“We study supermassive black holes in the very early universe when they are actively growing by accreting massive amounts of gaseous material,” says Wright. “While black holes themselves do not emit light, the gaseous material they chew on is heated to extreme temperatures, making them the most luminous objects in the universe.”

Continue reading “Astronomers Shed Light on Formation of Black Holes and Galaxies”

Cosmic Neighbors Inhibit Star Formation, Even in the Early-Universe

W. M. Keck Observatory press release

Galaxy cluster MACS J0416
Massive galaxy cluster MACS J0416 seen in X-rays (blue), visible light (red, green, and blue), and radio light (pink). Credit: NASA, CXC, SAO, G.Ogrean, STSCI, NRAO, AUI, NSF
The international University of California, Riverside-led SpARCS collaboration has discovered four of the most distant clusters of galaxies ever found, as they appeared when the Universe was only four billion years old. Clusters are rare regions of the Universe consisting of hundreds of galaxies containing trillions of stars, as well as hot gas and mysterious Dark Matter. Spectroscopic observations from the W. M. Keck Observatory on Maunakea, Hawaii and the Very Large Telescope in Chile confirmed the four candidates to be massive clusters. This sample is now providing the best measurement yet of when and how fast galaxy clusters stop forming stars in the early Universe.

“We looked at how the properties of galaxies in these clusters differed from galaxies found in more typical environments with fewer close neighbors,” said lead author Julie Nantais, an assistant professor at the Andres Bello University in Chile. “It has long been known that when a galaxy falls into a cluster, interactions with other cluster galaxies and with hot gas accelerate the shut off of its star formation relative to that of a similar galaxy in the field, in a process known as environmental quenching. The SpARCS team have developed new techniques using Spitzer Space Telescope infrared observations to identify hundreds of previously-undiscovered clusters of galaxies in the distant Universe.”

Continue reading “Cosmic Neighbors Inhibit Star Formation, Even in the Early-Universe”

Metal Content in Early Galaxies Challenges Star Forming Theory

W. M. Keck Observatory press release

An International team led by scientists at ETH Zurich in Switzerland used the W. M. Keck Observatory to study the role of star formation rates in metal contents of distant galaxies. What they discovered is the amount of metals are very similar, irrespective of galaxies’ star formation activity, raising new questions about star-forming theory. Their findings were recently published in the Astrophysical Journal.

Heavy Elements
A galaxy observed in this study (surrounded by a blue rectangle). The light we received from the galaxy in the distant Universe tells us – from hydrogen, oxygen, and neon emission lines – that they followed a different rule to produce the heavy elements. Credit: 3D-HST / NASA / ESA / STSCI
Using the MOSFIRE instrument installed on the Keck I telescope – one of the two world’s largest optical telescopes at Keck Observatory – the scientists gathered data on 41 normal, star-forming galaxies that were 11 billion light years away.

The team found typical galaxies forming stars in the Universe two billion years after the Big Bang have only twenty percent of metals (elements heavier than Helium) compared with those in the present day Universe. They also discovered the metal content is independent of the strength of the star-formation activity – in stark contrast with what is known for recently formed, or nearby galaxies.

Continue reading “Metal Content in Early Galaxies Challenges Star Forming Theory”

Four Synchronized Planets Reveal Clues to How Planets Form

W. M. Keck Observatory press release

The search for planets orbiting other stars in our galaxy has revealed an extraordinary family of planets whose orbits are so carefully timed that they provide long-term stability for their planetary system. The data came from observations from the Kepler Space Telescope and the W. M. Keck Observatory on Maunakea, Hawaii. A paper describing the formation of this planetary system by a research team was published in the journal Nature today.

Kepler223 Animation
The Kepler–223 planetary system, click on the image for an animation. Credit: W. Rebel
“The Kepler-223 planetary system has unusually long-term stability because its four planets interact gravitationally to keep the beat of a carefully choreographed dance as they orbit their host star,” said Eric Ford, a professor of astronomy and astrophysics at Penn State and a member of the research team. Each time the innermost planet (Kepler-223b) orbits the system’s star 3 times, the second-closest planet (Kepler-223c) orbits precisely 4 times. Thus, these two planets return to the same positions relative to each other and their host star.

Continue reading “Four Synchronized Planets Reveal Clues to How Planets Form”

Mauna Kea Observatories Put New Spin on Galaxy Formation

W. M. Keck Observatory press release

A team of Australian researchers used two Maunakea-based observatories – Gemini North and W. M. Keck Observatory – to discover why some galaxies are clumpy rather than spiral in shape and it appears that low spin is to blame. The finding challenges an earlier theory that high levels of gas cause clumpy galaxies, and sheds light on the conditions that brought about the birth of most of the stars in the Universe. The finding was published today in The Astrophysical Journal.

Galaxy Velocity
The massively star-forming galaxies analyzed in this study have clumpy, turbulent gas shown here in false colors. Credit: W. M. Keck Observatory/Gemini Observatory/Hubble
“This result was obtained by a unique and unusual combination of TWO large telescopes,”said Swinburne University astronomer Professor Karl Glazebrook, co-author and leader of the survey team “We used Keck adaptive optics to probe the fine details of galaxy rotation and Gemini to look at the large scale distribution. This made possible a result that was not before known about the spin of early primitive galaxies. It is one of the most exciting results of my career.”

A combination of integral field spectroscopy data from Keck Observatory and Gemini Observatory was the key to obtaining measurements for a galaxy’s spin. Keck Observatory’s OSIRIS instrument collected data high spatial resolution in the galaxy centers, and the Gemini Multi-Object Spectrograph (GMOS) collected data for high surface brightness sensitivity out to large radii.

Lead author Dr. Danail Obreschkow, from The University of Western Australia (UWA) node of the International Centre for Radio Astronomy Research (ICRAR), said that ten billion years ago the Universe was full of clumpy galaxies, but these developed into more regular objects as they evolved; the majority of stars in the sky today, including our five billion-year-old Sun, were probably born inside these clumpy galaxies.

Continue reading “Mauna Kea Observatories Put New Spin on Galaxy Formation”

Keck Observatory Gives Astronomers First Glimpse of Monster Galaxy Formation

W. M. Keck Observatory press release

After years of searching, Yale University astronomers have discovered a window into the early, violent formation of the nuclei of the Universe’s monster galaxies. After spotting a potential candidate with the 2.4-meter Hubble Space Telescope, the team of astronomers pointed the 10-meter Keck II telescope, operated by the W. M. Keck Observatory, to witness the turbulent, star-bursting galactic core forming millions of stars at a ferocious rate. The data collected during their five day run in Hawaii offers important clues about the galaxy’s development as it was 11 billion years ago — just 3 billion years after the Big Bang. The research is being published today in the journal Nature.

GOODS-N-774
This image shows observations of a newly discovered galaxy core dubbed GOODS-N-774. Credit: NASA/ESA
Galaxy formation theories have long suggested that monster elliptical galaxies form from the inside out, creating their dramatically star-studded central cores during early cosmic epochs. But scientists had never been able to observe this core construction — until now.

Only the most powerful telescopes have the ability to look back far enough to gather this important insight. “It’s a formation process that can’t happen anymore,” said Erica Nelson, Yale graduate student and lead author of the paper. “The early universe could make these galaxies, but the modern universe can’t. It was this hotter, more turbulent place — these were boiling cauldrons forging stars.”

Continue reading “Keck Observatory Gives Astronomers First Glimpse of Monster Galaxy Formation”

Keck Observations Upend Galaxy Evolution Theory

W. M. Keck Observatory press release

A comprehensive study of hundreds of galaxies observed by the Keck telescopes in Hawaii and NASA’s Hubble Space Telescope has revealed an unexpected pattern of change that extends back 8 billion years, or more than half the age of the universe.

“Astronomers thought disk galaxies in the nearby universe had settled into their present form by about 8 billion years ago, with little additional development since,” said Susan Kassin, an astronomer at NASA’s Goddard Space Flight Center in Greenbelt, Md., and the study’s lead researcher. “The trend we’ve observed instead shows the opposite, that galaxies were steadily changing over this time period.”

Today, star-forming galaxies take the form of orderly disk-shaped systems, such as the Andromeda Galaxy or the Milky Way, where rotation dominates over other internal motions. The most distant blue galaxies in the study tend to be very different, exhibiting disorganized motions in multiple directions. There is a steady shift toward greater organization to the present time as the disorganized motions dissipate and rotation speeds increase. These galaxies are gradually settling into well-behaved disks.

Settled Galaxies
This plot shows the fractions of settled disk galaxies in four time spans, each about 3 billion years long. Credit: Credit: NASA’s Goddard Space Flight Center

Blue galaxies—their color indicates stars are forming within them—show less disorganized motions and ever-faster rotation speeds the closer they are observed to the present. This trend holds true for galaxies of all masses, but the most massive systems always show the highest level of organization.

Researchers say the distant blue galaxies they studied are gradually transforming into rotating disk galaxies like our own Milky Way.

“Previous studies removed galaxies that did not look like the well-ordered rotating disks now common in the universe today,” said co-author Benjamin Weiner, an astronomer at the University of Arizona in Tucson. “By neglecting them, these studies examined only those rare galaxies in the distant universe that are well-behaved and concluded that galaxies didn’t change.”

Continue reading “Keck Observations Upend Galaxy Evolution Theory”