Well, the Waikoloa Elementary School star party wasn’t much for stars. We did see one star briefly through the clouds. There were four telescopes setup in the schoolyard waiting in hopes that the clouds would clear, but it was not to be. We stood around talking story and examining Cliff’s 24″ telescope. A truss tube dob is a great scope to show how a telescope works, all the inner parts exposed.
We waited an hour, but around 8pm the first hints of rain began. As the drops thickened we scurried to get the telescopes put away.
My thanks to the WHAC members who came out in support of this event! We will be attempting to reschedule the event, possibly for May 22nd.
At the Mauna Kea Visitor Information Station telescopes are available every clear night for the public to enjoy the wonders of the night sky. Every evening a set of telescopes ranging from 102mm to 16 inches is setup in the patio beside the VIS. The gear is used heavily, every night of the year, the wear on the telescopes does exact a toll. The abuse is constant, kids hanging on the eyepiece, volunteer operators who have never used a telescope, rain, fog, blowing cinder dust. Conditions that were never foreseen by the designers and far beyond what most telescopes encounter. Sometimes the condition of the equipment is embarrassing, dirty eyepieces, groaning mounts that refuse to track, much of the gear just looks worn and tired.
It is hard for me to see this, but at least I can do something about it, I do, after all, fix telescopes for a living. It is not unusual for me to spend an evening repairing a telescope and I have made a point of getting some more extensive maintenance accomplished.
My first effort last year was to clean and repair the small dobsonians used by visitors every night. Two eight inch, a six and a 4.5″ Orion dob are put out for anyone to use, from adults to children. After years of use they were in horrible shape, bearings and focusers were coming apart, collimation gone, moisture dissolving the woodwork, a finder attached with duct tape, the mirrors so covered with dust it is surprising there was much of an image to see. One of the eight inch scopes and the 4.5 inch were in pieces in the warehouse after a fix attempt by another volunteer. It took a few days of work to put all to right. Stealing parts from an older scope, repairing what could be saved, cleaning and pounding out a couple dents. Clean, re-install and re-collimate the optics. Four dobs back in service and in better shape than they had been in quite some time.
The 16″ Meade LX200 should be the flagship of the equipment used at the VIS. But for all too long it refused to work properly, it would not track. A trip back to the manufacturer failed to correct the problem, despite nearly a thousand dollars in shipping fees for factory service the telescope still would not work most of the time. Most volunteers would not use it, having given up in frustration. Surprisingly the issue was obvious, just listening to the scope indicated gears not fully meshed and grinding on one another. An hour’s worth of dismounting the scope, opening the bottom panel and re-seating a motor mount had the telescope back on sky and slewing from target to target. The scope has failed since, but the problem was even simpler, a loose connection found after a half hour of poking around.
Currently, one of the three Losmandy G-11 mounts belonging to the VIS is in my garage, spread across the table in many parts. I spent a few hours yesterday dismantling the mount and cleaning the grease and cinder dust out of the bearings. It is in pretty good shape, a good cleaning, re-seat the worm gears and some new clutch pads and it will be ready for a few more years of service. I need to get some more grease before I can reassemble the mount, but otherwise everything is ready to put back together. Finish this one and there are two more like it in sore need of maintenance.
One thing at a time, of course by the time I get through it all it will be necessary to start over again…
How bright a laser beam is needed to allow good public presentations and a good astronomy education experience? In the United States legal green lasers are limited to 5 milliwatts (mW) by the Food and Drug Administration. Many of the lasers sold as 5mW are actually 3-4mW as it is necessary to stay below that limit if you wish to import the laser into the United States or to sell the laser across state lines. 5mW units are fine if you are under fully dark skies, but often you are not, there are city lights, or moonlight and the 5mW beam ceases to be usably visible. This is worse if you are working with a larger group and the distance from the presenter is larger, also making the beam less visible. In practice I have found a beam in the 20-30mW range is about ideal. These lasers are available from a number of sources for around $100. Good visibility in moonlight, good visibility in light polluted surroundings and good large group utility. But importantly, not powerful enough to be truly dangerous.
Where does the 5mW limit come from? The FDA, being a very conservative organization, set the safety threshold at 5mW based on animal and human studies and medical injury data. The 5mW limit is a national standard and applies to interstate or customs transactions, not all states have adopted it. Hawai’i does not appear to have strict laws regarding lasers, licensing or use, so my 30mW unit is legal. This contrasts with my previous home in Arizona, which is more typical of many states. The use of a class IIIb device was subject to licensing, training requirements, and yearly fees. The agency responsible being the Arizona nuclear regulatory office. Sheer bureaucratic overkill that made it practically impossible to legally use a device in the power range I needed, just a few milliwatts over the limit. I am always surprised there is no intermediate class, that a 20-30mW device is classed with devices of up to half a watt, devices that are quite dangerous.
How do I come up with the 20-30mW number as being relatively safe? Being an engineer I understand safety margins and over specification and figured there must be a compromise. The trick was to find undistorted data, without the bias of overcautious bureaucrats. The data is out there on the web, but took some digging to find, many medical journal articles are hidden behind subscription services. Fortunately there are sources like PubMed that are freely and publicly accessible. Eventually I found and read several very informative papers on lasers and eye damage, looked at pictures of laser damage on monkey retinas and looked a damage done by visible lasers in the same sort of power class as those available for public work. I was surprised by actual human damage studies, done on patients who were having eyes removed due to conditions like cancer, where the researcher could do damage without harming the patient. What I was looking for was just what level of laser radiation is dangerous in practical use.
The conclusion I came to was that a 20-30mW unit could cause damage, but was not excessively risky. The data in the papers showed you could generate damage to a retina with even a 5mW device given a long (60s) exposure. But there were a lot of caveats, the beam had to be well focused, the eye could not be moving and it had to be focused for a substantial length of time. In reality a number of things protect the human eye, the first is the fact that the eye is constantly moving, this spreads the power over more than one spot, not allowing cumulative damage at one site. The second is that a bright visible laser will initiate a blink reflex, keeping any exposure in the tens of milliseconds time scale. To prevent these protective effects the tests in the references were sometimes done with anesthetized subjects. At the 100mW power level damage occurred with very short exposures and was quite dramatic.
A 20-30mW laser needs to be treated with respect as injury is possible, but no more than any other dangerous tool we use every day. In practice damage with a laser at a sensible power level (20-30mW) would require prolonged exposure (>0.5sec) on a single site on the retina, requiring staring into the beam. The bright green light would elicit both a blink response and an aversion of the head and eye, particularly in a visually dark adapted environment. I would strongly discourage use of any laser 50mW or greater for public astronomy work. Some of the references showed significant damage inflicted with 50mW lasers and sub second exposures. Lasers at all power levels should be kept out of the hands of anyone too young to understand the implications of the danger posed by a laser.