Astronomers Map Dark Matter Filament

W. M. Keck Observatory press release

Astronomers using the W. M. Keck Observatory, the Hubble Space Telescope, and other telescopes on Mauna Kea have studied a giant filament of dark matter in 3D for the first time. Extending 60 million light-years from one of the most massive galaxy clusters known, the filament is part of the cosmic web that constitutes the large-scale structure of the Universe, and is a leftover of the very first moments after the Big Bang. If the high mass measured for the filament is representative of the rest of the Universe, then these structures may contain more than half of all the mass in the Universe.

The theory of the Big Bang predicts that variations in the density of matter in the very first moments of the Universe led the bulk of the matter in the cosmos to condense into a web of tangled filaments. This view is supported by computer simulations of cosmic evolution, which suggest that the Universe is structured like a web, with long filaments that connect to each other at the locations of massive galaxy clusters. However, these filaments, although vast, are made mainly of dark matter, which is incredibly difficult to observe.

Dark Matter Filament
Reconstruction of a dark matter filament superimposed on the galaxy cluster. Credit: Image by ESA. Additional elements by K. Teramura, Univ. Hawaii Institute for Astronomy

The first convincing identification of a section of one of these filaments was made earlier this year. Now a team of astronomers has gone further by probing a filament’s structure in three dimensions. Seeing a filament in 3D eliminates many of the pitfalls that come from studying the flat image of such a structure.

“Filaments of the cosmic web are hugely extended and very diffuse, which makes them extremely difficult to detect, let alone study in 3D,” says Mathilde Jauzac (LAM, France and University of KwaZulu-Natal, South Africa), lead author of the study.

The team combined high resolution images of the region around the massive galaxy cluster MACS J0717.5+3745 (or MACS J0717 for short), taken using Hubble, NAOJ’s Subaru Telescope and the Canada-France-Hawaii Telescope, with spectroscopic data on the galaxies within it from the W. M. Keck Observatory and the Gemini Observatory. Analyzing these observations together gives a complete view of the shape of the filament as it extends out from the galaxy cluster almost along our line of sight.

Continue reading “Astronomers Map Dark Matter Filament”

Keck Observations Reveal Complex Face of Uranus

UC Berkeley press release

The planet Uranus, known since Voyager’s 1986 flyby as a bland, featureless blue-green orb, is beginning to show its face.

By using a new technique with the telescopes of the Keck Observatory, astronomers have created the most richly detailed, highest-resolution images ever taken of the giant ice planet in the near infrared, revealing an incredible array of atmospheric detail and more complex weather.

The planet, in fact, looks like many of the solar system’s other large planets — the gas giants Jupiter and Saturn, and the ice giant Neptune — said Imke de Pater, professor and chair of astronomy at the University of California, Berkeley, and one of the team members. The planet has bands of circulating clouds, massive swirling hurricanes and an unusual swarm of convective features at its north pole.

“This ‘popcorn’ appearance of Uranus’s pole reminds me very much of a Cassini image of Saturn’s south pole,” said de Pater.

Uranus with Keck AO
The two faces of Uranus as seen through the adaptive optics on the near-infrared camera of the Keck II telescope in Hawaii. Credit: Lawrence Sromovsky, Pat Fry, Heidi Hammel, Imke de Pater.

Saturn’s south pole is characterized by a polar vortex or hurricane, surrounded by numerous small cloud features that are indicative of strong convection and analogous to the heavily precipitating clouds encircling the eye of terrestrial hurricanes. De Pater’s group suggested that a similar phenomenon would be present on Neptune, based upon Keck observations of that planet.

“Perhaps we will also see a vortex at Uranus’ pole when the pole comes in full view,” she said.

The study was led by Larry Sromovsky, a planetary scientist at the University of Wisconsin, Madison. In addition to de Pater, other team members are Pat Fry of the University of Wisconsin and Heidi Hammel of the Association of Universities for Research in Astronomy. The team will report the details of their observations Oct. 17 at a meeting of the American Astronomical Society’s Division of Planetary Sciences in Reno, Nev.

Continue reading “Keck Observations Reveal Complex Face of Uranus”

UCLA astronomers at Keck Observatory Discover Pivotal Star to Test Einstein’s Theory

W. M. Keck Observatory Press Release

Today, UCLA astronomers using the W. M. Keck Observatory reported the discovery of a remarkable star that orbits the enormous black hole at the center of our Milky Way galaxy in a blistering 11-and-a-half years, the shortest known orbit of any star near this black hole.

Three Strikes
Three AO lasers aimed at the center of our Milky Way galaxy
The star, known as S0-102, may help astronomers discover whether Albert Einstein was right in his fundamental prediction of how black holes warp space and time, said Andrea Ghez, leader of the discovery team and professor of physics and astronomy, who holds UCLA’s Lauren B. Leichtman and Arthur E. Levine Chair in Astrophysics, and is a co-author. The research is published Oct. 5 in the journal Science.

Before this discovery, astronomers knew of only one star near the black hole with a very short orbit: S0-2, which Ghez used to call her “favorite star” and whose orbit is 16 years. (The “S” is for Sagittarius, the constellation containing the galactic center; its name is Latin for the archer.)

Continue reading “UCLA astronomers at Keck Observatory Discover Pivotal Star to Test Einstein’s Theory”

An Astronomy Discovery in the News

So a little telescope called Hubble takes a picture of a galaxy, a really distant galaxy over 10 billion lightyears away. Odd, it looks like this galaxy has gotten it’s act together and become a spiral galaxy, a lot earlier than we thought proper spiral galaxies would form. What do you do? Get some time on a bigger telescope and get some more data… Using Keck the OSIRIS spectrograph astronomers show that this is indeed a proper spiral galaxy, 10.7 billion light years away, which means 10.7 billion years in the past. The universe has just served up another surprise for astronomers, this is the sort of stuff we love.

BX442
HST/Keck false colour composite image of galaxy BX442. Credit: David Law; Dunlap Insitute for Astronomy & Astrophysics
Better yet, Keck gets a bit of good press for the discovery.

First spiral galaxy in early Universe stuns astronomers – BBC News

Earliest spiral galaxy found – CBC News

Astronomers find rare spiral galaxy in early Universe – The Sydney Morning Herald

Along with the sensible headlines there are those that play up the “This can’t be” angle of the discovery. For the most part the articles are fairly good, it is just the headlines that seem a little off, something to blame on the editors who write the headlines…

Hubble spots spiral galaxy that shouldn’t exist – Los Angeles Times

Astronomers Spot Ancient Spiral Galaxy From an Era When Spirals Should Not Exist – Popular Scince

Hubble spots rule-breaking spiral galaxy – 3 News

Headlines are always an issue in science reporting. Written by editors with a tendency to the excessive and sensational. Editors who often have little understanding of the science. We have seen what that can lead to, something that has been pleasantly rare with this latest discovery.

First Ancient Spiral Galaxy Discovered From 10.7 Billion Years Ago – Latinos Post

Is this the “first” spiral? We have no way of knowing. I have found no such quote from the astronomers involved with the discovery. The reason we study the early universe is that we do not know. This discovery shows that there could be others, perhaps even older.

There are other headlines, predictable headlines from the usual suspects. Every time science turns up some surprise, something that does not fit a simplistic view of the universe, those with an ideological agenda attempt to use the discovery to push their views… “Look at this! It disproves everything!!”, ” The scientists have it all wrong!!” Quite predictable…

Mystery galaxy could unravel Big Bang theory of creation – Catholic Online

And of course, scientists will need to look for other exceptions to the rule. If an inexplicable and significant number of premature spirals are found, then the Big Bang theory will need to be rewritten, or disposed of altogether, no matter how beloved it is today. After all, it is just a theory.

Yes, again you see the “It is Just a Theory” gambit, the creationists favorite canard. All a discovery like this proves is that the universe is a complex and fascinating place and that we still have much to learn.

“BX442 represents a link between early galaxies that are much more turbulent than the rotating spiral galaxies that we see around us. Indeed, this galaxy may highlight the importance of merger interactions at any cosmic epoch in creating grand design spiral structure.” – Alice Shapely of UCLA, co-discoverer of BX442

Earliest Spiral Galaxy Surprises Astronomers

W. M. Keck press release

In the beginning, galaxies were hot and clumpy – too hot to settle down and form grand spirals like the Milky Way and other galaxies seen in the nearby universe today. But astronomers have now been surprised by the discovery of a solitary grand design spiral galaxy in the early universe which could hold clues to how spirals start to take shape. The find was announced in a report in the July 19 edition of the journal Nature.

The ancient spiral, called BX442, was found by astronomers who first surveyed 300 distant galaxies using the Hubble Space Telescope, then followed up and confirmed using detailed observations and analyses from the W. M. Keck Observatory in Hawaii.

BX442 HST/Keck false colour composite image of galaxy BX442. Credit: David Law; Dunlap Insitute for Astronomy & Astrophysics

“As you go back in time to the early universe — about three billion years after the Big Bang; the light from this galaxy has been travelling to us for about 10.7 billion years —galaxies look really strange, clumpy and irregular, not symmetric” said astronomer Alice Shapley of UCLA. “The vast majority of old galaxies look like train wrecks. Our first thought was, why is this one so different, and so beautiful?”

Not only was the spiral shape clearly visible, but by using Keck’s OSIRIS instrument (OH-Suppressing Infrared Imaging Spectrograph), astronomers were able to study different parts of BX442 and determine that it is, in fact, rotating and not just two unrelated disk galaxies along the same line of sight that give the appearance of being a single spiral galaxy.

“We first thought this could just be an illusion and that perhaps we were being led astray by the picture,” said Shapley, a coauthor on the Nature paper. “What we found when we took spectra of this galaxy is that the spiral arms do belong to this galaxy; it wasn’t an illusion. Not only does it look like a rotating spiral disk galaxy; it really is. We were blown away.”

Continue reading “Earliest Spiral Galaxy Surprises Astronomers”

Discovery of the Most Distant Galaxy in the Cosmic Dawn

W. M. Keck Observatory press release

A team of astronomers has used the Subaru Telescope and the W. M. Keck Observatory to discover the most distant galaxy yet, at 12.91 billion light-years from the Earth. This new galaxy, dubbed SXDF-NB1006-2, is slightly farther away than the previous record holder, galaxy GN-108036, which was found last year.

To identify SXDF-NB1006-2, the team used the Subaru Telescope to observe a total of 37 hours in seven nights in two wide fields of the sky. The team, led by Takatoshi Shibuya (The Graduate University for Advanced Studies, Japan), Dr. Nobunari Kashikawa (National Astronomical Observatory of Japan), Dr. Kazuaki Ota (Kyoto University), and Dr. Masanori Iye (National Astronomical Observatory of Japan), carefully processed the images they had obtained. Shibuya measured the color of 58,733 objects in the images and identified four galaxy candidates at a redshift of 7.3, which translates into about 12.9 billion light-years. A careful investigation of the brightness variation of the objects allowed the team to narrow down the number of candidates to two.

SXDF-NB1006-2Color composite image of the Subaru XMM-Newton Deep Survey Field of galaxy SXDF-NB1006-2, credit NAOJ

Finally, the team needed to make spectroscopic observations to confirm the nature of these candidates. They observed the two galaxy candidates with two spectrographs, the Faint Object Camera and Spectrograph (FOCAS) on the Subaru Telescope and the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II Telescope, and identified one candidate for which a characteristic emission line of distant galaxies could be detected. The results are slated to be published in the June 20, 2012, edition of Astrophysical Journal.

In addition to locating the galaxy, the team’s research verified that the proportion of neutral hydrogen gas in the 750-million-year-old early Universe was higher than it is today. These findings help to decipher the early Universe during the “cosmic dawn,” when the light of ancient celestial objects and structures first appeared. They concluded that about 80 percent of the hydrogen gas in the ancient Universe, 12.91 billion years ago at a redshift of 7.2, was neutral.

Continue reading “Discovery of the Most Distant Galaxy in the Cosmic Dawn”

Keck Lecture – Dr. Brian Siana

On Thursday, May 10, 2012, Keck Observatory hosted a live webcast of an astronomy talk by Dr. Brian Siana of the University of California at Riverside. Below is the recording of that talk, which was delivered to a live audience at the Kahilu Theatre in Kamuela-Waimea, Hawaii.

The first galaxies had an extraordinary impact on the young universe. Their ultraviolet light destroyed nearly all of the atoms in the cosmos. This process, called reionization, had severe consequences for galaxies trying to form thereafter. Unfortunately, we have no idea how it happened. In galaxies today ultraviolet light cannot escape, so the first galaxies must have been very different from those we see today. Dr. Siana will describe the quest to detect these first galaxies and their impact on the early universe.

‘Ridiculously’ Dim Bevy of Stars Found Beyond Milky Way

W. M. Keck Observatory press release…

A team of American, Canadian and Chilean astronomers have stumbled onto a remarkably faint cluster of stars orbiting the Milky Way that puts out as much light as only 120 modest Sun-like stars. The tiny cluster, called Muñoz 1, was discovered near a dwarf galaxy in a survey of satellites around the Milky Way using the Canada-France-Hawaii Telescope (CFHT) and confirmed using the Keck II telescope, both of which are on Mauna Kea, Hawaii.

“What’s neat about this is it’s the dimmest globular cluster ever found,” said Ricardo Muñoz, an astronomer at the University of Chile and the discoverer of the cluster. A globular cluster is a spherical group of stars bound to each other by gravity so that they orbit around a galaxy as a unit.

“While I was working on the Ursa Minor dwarf galaxy I noticed there was this tiny little object close by,” Muñoz recalled. He made the discovery while he was a postdoctoral associate at Yale University. Most globular clusters have in the range of 100,000 stars. Muñoz 1 has something like 500 stars. “This is very surprising,” he said.

Muñoz 1
The Muñoz 1 globular cluster is seen to the right of the Ursa Minor dwarf galaxy in this image from the Canada-France-Hawaii Telescope MegaCam imager.

“It’s ridiculously dim,” agreed Yale astronomer Marla Geha. “There are individual stars that would far outshine this entire globular cluster.” That puts Muñoz 1 head-to-head with the Segue 3 globular cluster (also orbiting the Milky Way) as the dimmest troupe of old stars ever found.

Muñoz 1’s discovery was the result of a survey done with the CFHT MegaCam imager in 2009 and 2010. It was then confirmed by spectroscopic study using the Deep Extragalactic Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II telescope. The researchers will be publishing their results soon in The Astrophysical Journal Letters.

The Keck data was critical for the study, said Geha, because it sorted out whether or not Muñoz 1 and the Ursa Minor dwarf galaxy were moving together.

“Nearly every galaxy has an entourage of globular clusters,” said Geha, “so we first thought that Muñoz 1 might be associated with the nearby Ursa Minor dwarf galaxy.” By using spectroscopic data to measure the relative velocities of the cluster and the dwarf galaxy, they discovered quite the opposite was the case.

“The velocities turned out to be wildly different,” said Geha. So the fact that they are near each other is just a coincidence, she said. What has been seen is more like a single snapshot of two cars traveling near each other and apparently together, but they really have different destinations and are traveling at very different speeds. Analysis of the brightness and colors of the stars belonging to Muñoz 1 and Ursa Minor also suggests that the tiny cluster is actually located about 100,000 light years in front of the dwarf galaxy.

As for how Muñoz 1 came to be so dim, a likely scenario is that it has gradually lost stars over the eons, said Geha. It’s also possible it was stripped of stars by passing through the Milky Way. But the direction of the cluster’s movement is not yet known, so it’s not known whether it has passed through the Milky Way.

Perhaps the most intriguing aspect of the discovery is the possibility that Muñoz 1 may be hinting that there are many more such globular clusters in the Galactic halo. After all, the CFHT survey covered only 40 square degrees of sky out of 40,000 square degrees in the entire sky.

“Assuming that we’re not just lucky to have found something very rare, there could be many others out there,” said Geha.

“To truly understand its nature, we will need to measure its mass,” added Munoz. To do that, astronomers would need to measure the velocities of individual stars in the cluster and see how they move with relation to each other. That, in turn, reveals the overall mass of the cluster. A lot of mass would suggest there is a lot of dark matter holding the cluster together, and maybe even qualify the cluster as the smallest, darkest galaxy ever discovered. Right now the Segue 1 dwarf galaxy holds that record. Geha was also involved in measurements with the Keck DEIMOS instrument that confirmed the nature of Segue 1.

“The goal of this survey was to understand the difference between dwarf galaxies and globular clusters,” said Geha. Muñoz 1 suggests there may be plenty of borderline objects out there waiting to be found, which could help sort that matter out.

A pdf of the paper is available at http://www.cfht.hawaii.edu/en/news/Munoz1/munoz12.pdf.

Recycling Galaxies Caught in the Act

W. M. Keck Observatory press release

When astronomers add up all the gas and dust contained in ordinary galaxies like our own Milky Way, they stumble on a puzzle: There is not nearly enough matter for stars to be born at the rates that are observed. Part of the solution might be a recycling of matter on gigantic scales – veritable galactic fountains of matter flowing out and then back into galaxies over multi-billion-year timescales.

Now, a team of astronomers led by Kate Rubin of the Max Planck Institute for Astronomy in Germany has used the W. M. Keck Observatory to find evidence of just such fountains in distant spiral galaxies.

In the Milky Way, it’s estimated that every year about one solar mass (an amount of matter equal to that of our Sun) worth of dust and gas is turned into stars. Yet a survey of the available raw materials shows that our galaxy could not keep up this rate of star formation for longer than a couple of billion years. Star ages and comparisons with other spiral galaxies show that one solar mass per year is a typical star formation rate. So the puzzle appears to be universal.

Continue reading “Recycling Galaxies Caught in the Act”

Super-Earth Detected in Habitable Zone of Nearby Star

W. M. Keck Observatory press release

An international team of scientists has discovered a potentially habitable super-Earth orbiting a nearby star. With an orbital period of about 28 days and a minimum mass 4.5 times that of the Earth, the planet orbits within the star’s “habitable zone,” where temperatures are neither too hot nor too cold for liquid water to exist on the planet’s surface. The researchers found evidence of at least one and possibly two or three additional planets orbiting the star, which is about 22 light years from Earth.

The researchers used public data from the European Southern Observatory and analyzed it with a novel data-analysis method. They also incorporated new measurements from the W. M. Keck Observatory’s High Resolution Echelle Spectrograph (HiRES) and the new Carnegie Planet Finder Spectrograph at the Magellan II Telescope. Their planet-finding technique involved measuring the small wobbles in a star’s motion caused by the gravitational tug of a planet.

The team includes UC Santa Cruz astronomers Steven Vogt and Eugenio Rivera and was led by Guillem Anglada-Escudé and Paul Butler of the Carnegie Institution for Science. Their work will be published by Astrophysical Journal Letters, and the manuscript will be posted online at arxiv.org/archive/astro-ph.

The host star is a member of a triple-star system and has a different makeup than our sun, with a much lower abundance of elements heavier than helium, such as iron, carbon, and silicon. This discovery indicates that potentially habitable planets can occur in a greater variety of environments than previously believed.

Continue reading “Super-Earth Detected in Habitable Zone of Nearby Star”