Astronomers Measure Universe Expansion, Get Hints of ‘New Physics’

W. M. Keck Observatory press release

Astronomers have just made a new measurement of the Hubble constant, the rate at which the universe is expanding, and it doesn’t quite line up with a different estimate of the same number. That discrepancy could hint at “new physics” beyond the standard model of cosmology, according to the team, which includes physicists from the University of California, Davis, that made the observation.

Lensed Quasar HE0435-1223
The image of this quasar is split into four by a massive galaxy acting as a gravitational lens. Image credit: Sherry Suyu, European Space Agency/Hubble Space Telescope/NASA
The Hubble constant allows astronomers to measure the scale and age of the universe and measure the distance to the most remote objects we can see, said Chris Fassnacht, a physics professor at UC Davis and a member of the international H0LiCOW (H0 Lenses in COSMOGRAIL’s Wellspring) collaboration, which carried out the work.

Led by Sherry Suyu at the Max Planck Institute for Astrophysics in Germany, the H0LICOW team used the NASA/ESA Hubble Space Telescope and other space- and Earth-based telescopes, including the Keck telescopes in Hawaii, to observe three galaxies and arrive at an independent measurement of the Hubble constant. Eduard Rusu, a postdoctoral researcher at UC Davis, is first author on one of five papers describing the work, due to be published in the Monthly Notices of the Royal Astronomical Society.

Continue reading “Astronomers Measure Universe Expansion, Get Hints of ‘New Physics’”

Astronomers Baffled by Discovery of Rare Quasar Quartet

W. M. Keck Observatory press release

Using the W. M. Keck Observatory in Hawaii, a group of astronomers led by Joseph Hennawi of the Max Planck Institute for Astronomy have discovered the first quadruple quasar: four rare active black holes situated in close proximity to one another. The quartet resides in one of the most massive structures ever discovered in the distant universe, and is surrounded by a giant nebula of cool dense gas. Because the discovery comes with one-in-ten-million odds, perhaps cosmologists need to rethink their models of quasar evolution and the formation of the most massive cosmic structures. The results are being published in the May 15, 2015 edition of the journal Science.

Quasar Quartet
Image of the region of the space occupied by the rare quasar quartet. The four quasars are indicated by arrows. Credit: Hennawi & Arrigoni-Battaia, MPIA
Hitting the jackpot is one thing, but if you hit the jackpot four times in a row you might wonder if the odds were somehow stacked in your favor.

Quasars constitute a brief phase of galaxy evolution, powered by the in-fall of matter onto a supermassive black hole at the center of a galaxy. During this phase, they are the most luminous objects in the Universe, shining hundreds of times brighter than their host galaxies, which themselves contain hundreds of billions of stars. But these hyper-luminous episodes last only a tiny fraction of a galaxy’s lifetime, which is why astronomers need to be very lucky to catch any given galaxy in the act. As a result, quasars are exceedingly rare on the sky, and are typically separated by hundreds of millions of light years from one another. The researchers estimate that the odds of discovering a quadruple quasar by chance is one in ten million. How on Earth did they get so lucky?

Clues come from peculiar properties of the quartet’s environment. The four quasars are surrounded by a giant nebula of cool dense hydrogen gas, which emits light because it is irradiated by the intense glare of the quasars. In addition, both the quartet and the surrounding nebula reside in a rare corner of the universe with a surprisingly large amount of matter. “There are several hundred times more galaxies in this region than you would expect to see at these distances,” said J. Xavier Prochaska, professor at the University of California Santa Cruz and the principal investigator of the Keck Observatory observations.

Continue reading “Astronomers Baffled by Discovery of Rare Quasar Quartet”

UCSC Scientists Capture First Cosmic Web Filaments at Keck Observatory

W. M. Keck Observatory press release

Astronomers have discovered a distant quasar illuminating a vast nebula of diffuse gas, revealing for the first time part of the network of filaments thought to connect galaxies in a cosmic web. Researchers at the University of California, Santa Cruz, led the study, published January 19 in the journal, Nature.

Cosmic Web Filament
This deep image shows the nebula (cyan) extending across 2 million light-years that was discovered around the bright quasar UM287 (at the center of the image). Credit: S. Cantalupo, UCSC
Using the 10-meter Keck I telescope at the W. M. Keck Observatory in Hawaii, the researchers detected a very large, luminous nebula of gas extending about 2 million light-years across intergalactic space.

“This is a very exceptional object: it’s huge, at least twice as large as any nebula detected before, and it extends well beyond the galactic environment of the quasar,” said Sebastiano Cantalupo, first author of the paper and a postdoctoral fellow at UC Santa Cruz.

The standard cosmological model of structure formation in the universe predicts that galaxies are embedded in a cosmic web of matter, most of which (about 84 percent) is invisible dark matter. This web is seen in the results from computer simulations of the evolution of structure in the universe, which show the distribution of dark matter on large scales, including the dark matter halos in which galaxies form and the cosmic web of filaments that connect them. Gravity causes ordinary matter to follow the distribution of dark matter, so filaments of diffuse, ionized gas are expected to trace a pattern similar to that seen in dark matter simulations.

Continue reading “UCSC Scientists Capture First Cosmic Web Filaments at Keck Observatory”