Dual Laser Milky Way Photo Op

The island is home to a vibrant community of photographers, a mix of professionals and serious amateurs. There is one set of photos everyone, and I do mean everyone wants… Dual lasers on the Milky Way.

Dual Lasers on the Galactic Center
Both Keck lasers aimed at the center of the Milky Way galaxy
Just occasionally both of the keck telescopes, and both lasers, are focused on the center of the galaxy, both stabbing right at the heart of the Milky Way.

Opportunities to see and photograph this are few, and occur strictly during the summer months of June to August, when the Milky Way is high overhead. furthermore, these opportunities occur only when Andre Ghez and her UCLA Galactic Center Group have both telescopes scheduled.

July 25th was such a night, a good opportunity to get both lasers. Andrea’s group has the first half of the night, turning over the ‘scopes to other astronomers just after midnight. Actually there were a few nights this particular week, we just chose the 25th. After this galactic center season is over, at least until next year.

Continue reading “Dual Laser Milky Way Photo Op”

Unexpected Classification of Exoplanets Discovered

W. M. Keck Observatory press release

Since the mid-1990s, when the first planet around another sun-like star was discovered, astronomers have amassed an ever-expanding collection of nearly 3,500 confirmed exoplanets.

Exoplanet Formation
Assembly Line of Planets: This diagram illustrates how planets are assembled and sorted into two distinct size classes. Image credit: NASA/Kepler/Caltech (R. Hurt)
In a new Caltech-led study, researchers have classified these exoplanets in much the same way that biologists identify new animal species and found the majority of exoplanets fall into two distinct groups: rocky Earth-like planets and larger mini-Neptunes. The team used data from W. M. Keck Observatory and NASA’s Kepler mission.

“This is a major new division in the family tree of planets, analogous to discovering that mammals and lizards are distinct branches on the tree of life,” says Andrew Howard, professor of astronomy at Caltech and a principal investigator of the new research.

The lead author of the new study, to be published in The Astronomical Journal, is Benjamin J. (B. J.) Fulton, a graduate student in Howard’s group.

In essence, their research shows that our galaxy has a strong preference for either rocky planets up to 1.75 times the size of Earth or gas-enshrouded mini-Neptune worlds, which are from 2 to 3.5 times the size of Earth (or somewhat smaller than Neptune). Our galaxy rarely makes planets with sizes in between these two groups.

“Astronomers like to put things in buckets,” says Fulton. “In this case, we have found two very distinct buckets for the majority of the Kepler planets.”

Continue reading “Unexpected Classification of Exoplanets Discovered”

Astronomers Prove What Separates True Stars from Wannabes

W. M. Keck Observatory press release

Astronomers have shown what separates real stars from the wannabes. Not in Hollywood, but out in the universe.

“When we look up and see the stars shining at night, we are seeing only part of the story,” said Trent Dupuy of the University of Texas at Austin and a graduate of the Institute for Astronomy at the University of Hawaii at Manoa. “Not everything that could be a star ‘makes it,’ and figuring out why this process sometimes fails is just as important as understanding when it succeeds.”

Dupuy is the lead author of the study and is presenting his research today in a news conference at the semi-annual meeting of the American Astronomical Society in Austin.

He and co-author Michael Liu of the University of Hawaii have found that an object must weigh at least 70 times the mass of Jupiter in order to start hydrogen fusion and achieve star-status. If it weighs less, the star does not ignite and becomes a brown dwarf instead.

How did they reach that conclusion? The two studied 31 faint brown dwarf binaries (pairs of these objects that orbit each other) using W. M. Keck Observatory’s laser guide star adaptive optics system (LGS AO) to collect ultra-sharp images of them, and track their orbital motions using high-precision observations.

“We have been working on this since Keck Observatory’s LGS AO first revolutionized ground-based astronomy a decade ago,” said Dupuy. “Keck is the only observatory that has been doing this consistently for over 10 years. That long-running, high-quality data from the laser system is at the core of this project.”

Continue reading “Astronomers Prove What Separates True Stars from Wannabes”

Primordial Galaxy Discovered, First of Its Kind

MACS1423-z7p64 galaxy
Graphic illustration of how MACS1423-z7p64 was detected via gravitational lensing with NASA’s Hubble Space Telescope and confirmed by W. M. Keck Observatory’s MOSFIRE. Credit: NASA/W. M. Keck Observatory/A. Hoag/M. Bradac
W. M. Keck Observatory press release

Seven years of meticulous observing have resulted in a cosmic discovery that comes from an era dating back 13.1 billion years, giving scientists a detailed glimpse of what may have happened just after the Big Bang.

Using the world-class W. M. Keck Observatory on Maunakea, Hawaii, an international team of astronomers from the United States, Australia, and Europe has confirmed the existence of one of the most distant galaxies in the universe.

To characterize the faint galaxy, the discovery team, led by Austin Hoag, a University of California, Davis physics graduate student, used MOSFIRE, the most in-demand instrument on the 10-meter Keck I telescope.

What makes this galaxy extraordinary is that it is ordinary. It is thought to be a common galaxy at that distance and age of the universe. However, such galaxies would normally be too faint to detect. The astronomers used a method called gravitational lensing to magnify the galaxy so they could study it.

“Most objects that we’ve seen at that distance are extremely bright, and probably rare compared to other galaxies,” said Hoag. “We think this galaxy is much more representative of other galaxies of its time.”

Continue reading “Primordial Galaxy Discovered, First of Its Kind”

W. M. Keck Observatory Achieves First Light with New Instrument

W. M. Keck Observatory press release

W. M. Keck Observatory overnight captured the very first successful science data from its newest, cutting-edge instrument, the Keck Cosmic Web Imager (KCWI).

KCWI First Light Image
KCWI’s first look at the cosmos involved a spectral image of an exquisitely dense core of an ancient astronomical relic, showcasing the highest spectral resolving power and spatial resolution of the instrument. Credit W. M. Keck Observatory
KCWI captures three-dimensional data, as opposed to the traditional two-dimensional image or spectrum of conventional instruments. In a single observation, it records an image of the object at multiple wavelengths allowing scientists to explore both the spatial dimension (as in an image) and the spectral dimension (or color) of an object.

“I’m thrilled to see this new instrument,” said Keck Observatory Director Hilton Lewis. “It takes years to design and build these very sophisticated instruments. KCWI is a superb example of the application of the most advanced technology to enable the hardest science. I believe it has the potential to transform the science that we do, and continue to keep Keck Observatory right at the forefront of astronomical research.”

KCWI is extremely sensitive, specifically designed to capture high-resolution spectra of ultra-faint celestial bodies with unprecedented detail. It is able to differentiate even the slightest changes in spectral color with a great degree of accuracy.

This powerful capability is key for astronomers because a highly-detailed spectral image allows them to identify a cosmic object’s characteristics, including its temperature, motion, density, mass, distance, chemical composition, and more.

Continue reading “W. M. Keck Observatory Achieves First Light with New Instrument”

Ancient Dead Galaxy Sets New Record

W. M. Keck Observatory press release

Galaxy ZF-COSMOS-20115
Artist’s impression of galaxy ZF-COSMOS-20115. The galaxy has likely blown off all the gas that caused its rapid star formation and mass growth, and rapidly turned into a compact red galaxy. Credit: CREDIT: Leonard Doublet/Swinburne University of Technology.
An international team of astronomers has, for the first time, spotted a massive, inactive galaxy from a time when the Universe was only 1.65 billion years old. This rare discovery, made using the world-class W. M. Keck Observatory on Maunakea, Hawaii, could change the way scientists think about the evolution of galaxies.

This research publishes today in the journal Nature, with Professor Karl Glazebrook, director of Swinburne’s Centre for Astrophysics and Supercomputing , as the lead author. To characterize the faint galaxy, the discovery team used MOSFIRE, the most in-demand instrument on the 10-meter Keck I telescope.

“This observation was only possible due to the extreme sensitivity of the new MOSFIRE spectrograph,” said Glazebrook. “It is the absolute best in the world for faint near-IR spectra by a wide margin. Our team is indebted to the accomplishment of Chuck Steidel, Ian McClean, and all the Keck Observatory staff for building and delivering this remarkable instrument.”

Astronomers expect most galaxies from this epoch to be low-mass minnows, busily forming stars. However, this galaxy is ‘a monster’ and inactive.

Continue reading “Ancient Dead Galaxy Sets New Record”

NASA Study Using Keck Telescope Hints at Possible Change in Water ‘Fingerprint’ of Comet

W. M. Keck Observatory press release

A trip past the sun may have selectively altered the production of one form of water in a comet – an effect not seen by astronomers before, a new NASA study suggests.

C/2014 Q2 Lovejoy & M45
Comet C/2014 Q2 Lovejoy passing by the Pleiades star cluster
Astronomers from NASA’s Goddard Space Flight Center in Greenbelt, Maryland, observed the Oort cloud comet C/2014 Q2, also called Lovejoy, when it passed near Earth in early 2015. Through NASA’s partnership in the W. M. Keck Observatory on Mauna Kea, Hawaii, the team observed the comet at infrared wavelengths a few days after Lovejoy passed its perihelion – or closest point to the sun.

Scientists from NASA’s Goddard Center for Astrobiology observed the comet C/2014 Q2 – also called Lovejoy – and made simultaneous measurements of the output of H2O and HDO, a variant form of water. This image of Lovejoy was taken on Feb. 4, 2015 – the same day the team made their observations and just a few days after the comet passed its perihelion, or closest point to the sun.

Continue reading “NASA Study Using Keck Telescope Hints at Possible Change in Water ‘Fingerprint’ of Comet”

Astronomy Team Releases Planet-Search Data

UC Santa Cruz press release

An international team of astronomers has released the largest ever compilation of exoplanet-detecting observations made using a technique called the radial velocity method. By making the data public, the team is offering unprecedented access to one of the best exoplanet searches in the world.

Planet Hunters Paul Butler and Steve Vogt
UCSC astronomer Steve Vogt (foreground) with collaborator Paul Butler at the W. M. Keck Observatory in Hawaii. Photo by Laurie Hatch
The data were gathered as part of a two-decade planet-hunting program using a spectrometer called HIRES, built by UC Santa Cruz astronomer Steven Vogt and mounted on the 10-meter Keck-I telescope at the W. M. Keck Observatory atop Mauna Kea in Hawaii.

“HIRES was not specifically optimized to do this type of exoplanet detective work, but has turned out to be a workhorse instrument of the field,” said Vogt, a professor emeritus of astronomy and astrophysics. “I am very happy to contribute to science that is fundamentally changing how we view ourselves in the universe.”

Continue reading “Astronomy Team Releases Planet-Search Data”

Dwarf Star 200 Light Years Away Contains Life’s Building Blocks

W. M. Keck Observatory press release

Many scientists believe the Earth was dry when it first formed, and that the building blocks for life on our planet — carbon, nitrogen and water — appeared only later as a result of collisions with other objects in our solar system that had those elements.

Keck in the Dawn
The twin domes of Keck Observatory lit by the first rays of dawn
Today, a UCLA-led team of scientists reports that it has discovered the existence of a white dwarf star whose atmosphere is rich in carbon and nitrogen, as well as in oxygen and hydrogen, the components of water. The white dwarf is approximately 200 light years from Earth and is located in the constellation Boötes.

Continue reading “Dwarf Star 200 Light Years Away Contains Life’s Building Blocks”

Over 100 New Exoplanet Candidates Discovered With W. M. Keck Observatory

W. M. Keck Observatory press release

Exoplanet GJ 411
HIRES instrument helps detect potential exoplanets. Artist’s conceptions of the probable planet orbiting a star called GJ 411, courtesy of Ricardo Ramirez.
An international team of astronomers today released a compilation of almost 61,000 individual measurements made on more than 1,600 stars, used to detect exoplanets elsewhere in our Milky Way galaxy. The compilation includes data on over 100 new potential exoplanets. The entire dataset was observed using one of the twin telescopes of the W. M. Keck Observatory on Maunakea over the past two decades. The search for new worlds elsewhere in our Milky Way galaxy is one of the most exciting frontiers in astronomy today. The paper is published in the Astronomical Journal.

Continue reading “Over 100 New Exoplanet Candidates Discovered With W. M. Keck Observatory”