Join us this Sunday for a live broadcast from Keck 2 remote observing! Here at Keck we will be participating in a campaign to observe Saturn’s auroras. Join JPL scientist Dr. Kevin Baines and Dr. Tom Stallard of the University of Leicester while they are engaged in using the telescope.
This false-color composite image, constructed from data obtained by NASA’s Cassini spacecraft. Image credit NASA/JPL/University of Arizona/University of LeicesterSunday April 21st
3am-5am Hawai’i Standard Time
6am-8am Pacific Daylight Time
9am-11am Eastern Daylight Time
1pm-3pm UT
At Keck the team of astronomers have five half night’s of observing on Keck 2 using the NIRSPEC spectrograph. They will be making infrared observations to understand more about the auroral features and the interaction of Saturn’s atmosphere with the planet’s magnetic fields.
NASA funded observations on the W. M. Keck Observatory with analysis led by the University of Leicester, England tracked the “rain” of charged water particles into the atmosphere of Saturn and found the extent of the ring-rain is far greater, and falls across larger areas of the planet, than previously thought. The work reveals the rain influences the composition and temperature structure of parts of Saturn’s upper atmosphere. The paper appears in this week’s issue of the journal Nature.
“Saturn is the first planet to show significant interaction between its atmosphere and ring system,” said James O’Donoghue, the paper’s lead author and a postgraduate researcher at Leicester. “The main effect of ring rain is that it acts to ‘quench’ the ionosphere of Saturn, severely reducing the electron densities in regions in which it falls.”
Observations of Europa from the W. M. Keck Observatory help NASA and California Institute of Technology (Caltech) astronomers go one step further in demonstrating life may be possible in the ocean of one of Jupiter’s moons. In addition to the known existence of water, a paper published today shows hydrogen peroxide is abundant across much of the surface of the smallest of the Galilean Moons. The paper argues that if the peroxide on the surface of Europa mixes into the ocean below, it could be an important energy supply for simple forms of life. The paper was published online in the Astrophysical Journal Letters.
(On March 14, a separate paper was published by the same team in Astronomical Journal, demonstrating the salty ocean of Europa makes its way through the frozen surface, introducing the possibility the ocean is habitable. Click here for that news release.)
“Life as we know it needs liquid water, elements like carbon, nitrogen, phosphorus and sulfur, and it needs some form of chemical or light energy to get the business of life done,” said Kevin Hand, the paper’s lead author, based at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “Europa has the liquid water and elements, and we think that compounds like peroxide might be an important part of the energy requirement. The availability of oxidants like peroxide on Earth was a critical part of the rise of complex, multicellular life.”
This color composite view combines violet, green, and infrared images of Jupiter’s intriguing moon, Europa, image credit NASA/JPL/University of Arizona
The scientists think hydrogen peroxide is an important factor for the habitability of the global liquid water ocean under Europa’s icy crust because hydrogen peroxide decays to oxygen when mixed into liquid water. “At Europa, abundant compounds like peroxide could help to satisfy the chemical energy requirement needed for life within the ocean, if the peroxide is mixed into the ocean,” said Hand.
Co-author Mike Brown of Caltech in Pasadena, analyzed data collected from the Near-Infrared Echelle Spectrograph (NIRSPEC) and OH Suppressing Infra-Red Imaging Spectrograph (OSIRIS) instruments on the mighty Keck II telescope on Mauna Kea, Hawaii, over four nights in September 2011. The highest concentration of peroxide found was on the side of Europa that always leads in its orbit around Jupiter, with a peroxide abundance of 0.12 percent relative to water. (This is roughly 20 times more diluted than the hydrogen peroxide mixture available at drug stores.) The concentration of peroxide in Europa’s ice then drops off to nearly zero on the hemisphere of Europa that faces backward in its orbit.
Hydrogen peroxide was first detected on Europa by NASA’s Galileo mission, which explored the Jupiter system from 1995 to 2003, but Galileo observations were of a limited region. The data from Keck Observatory shows that peroxide is widespread across much of the surface of Europa, and the highest concentrations are reached in regions where Europa’s ice is nearly pure water with very little sulfur contamination. The peroxide is created by the intense radiation processing of Europa’s surface ice that comes from the moon’s location within Jupiter’s strong magnetic field.
“The Galileo measurements gave us tantalizing hints of what might be happening all over the surface of Europa, and we’ve now been able to quantify that with our Keck telescope observations,” Brown said. “What we still don’t know is how the surface and the ocean mix, which would provide a mechanism for any life to use the peroxide.”
A team of international scientists using the W. M. Keck Observatory has made the most detailed examination yet of the atmosphere of a Jupiter-size planet beyond our Solar System.
According to lead author Quinn Konopacky, an astronomer with the Dunlap Institute for Astronomy & Astrophysics, University of Toronto and a former Lawrence Livermore National Laboratory (LLNL) postdoc, “We have been able to observe this planet in unprecedented detail because of Keck Observatory’s advanced instrumentation, our ground-breaking observing and data processing techniques, and because of the nature of the planetary system.” The paper appears online March 14th in Science Express, and March 22nd in the journal Science.
“This is the sharpest spectrum ever obtained of an extrasolar planet,” said co-author Bruce Macintosh, an astronomer at LLNL. “This shows the power of directly imaging a planetary system—the exquisite resolution afforded by these new observations has allowed us to really begin to probe planet formation.”
Artist’s rendering of the planetary system HR 8799 at an early stage in its evolution. Credit: Dunlap Institute for Astronomy & Astrophysics
The team, using the OSIRIS instrument fitted on the mighty Keck II telescope on the summit of Mauna Kea, Hawaii, has uncovered the chemical fingerprints of specific molecules, revealing a cloudy atmosphere containing water vapor and carbon monoxide. “With this level of detail,” says coauthor Travis Barman, an astronomer at the Lowell Observatory, “we can compare the amount of carbon to the amount of oxygen present in the atmosphere, and this chemical mix provides clues as to how the planetary system formed.”
There has been uncertainty about how planets in other solar systems formed, with two leading models, called core accretion and gravitational instability. When stars form, they are surrounded by a planet-forming disk. In the first scenario, planets form gradually as solid cores slowly grow big enough to start absorbing gas from the disk. In the latter, planets form almost instantly as parts of the disk collapse on themselves. Planetary properties, like the composition of a planet’s atmosphere, are clues as to whether a system formed according to one model or the other.
The W. M. Keck Observatory has successfully completed a $4 million campaign that will give astronomers the most detailed Adaptive Optics images of the cosmos ever created by mankind. Furthermore, the campaign was funded entirely by private philanthropy.
With data collected from the W. M. Keck Observatory, California Institute of Technology (Caltech) astronomer Mike Brown — known as the Pluto killer for discovering a Kuiper-belt object that led to the demotion of Pluto from planetary status — and Kevin Hand from the Jet Propulsion Laboratory (JPL) have found the strongest evidence yet that salty water from the vast liquid ocean beneath Europa’s frozen exterior actually makes its way to the surface.
The data suggests there is a chemical exchange between the ocean and surface, making the ocean a richer chemical environment, and implies that learning more about the ocean could be as simple as analyzing the moon’s surface. The work is described in a paper that has been accepted for publication in the Astronomical Journal.
The findings were derived from spectroscopy delivered from the Keck Observatory, which operates the largest and most scientifically productive telescopes on Earth.
“We now have the best spectrum of this thing in the world,” Brown says. “Nobody knew there was this little dip in the spectrum because no one had the resolution to zoom in on it before.”
A good sized meteor has airburst over the city of Chelyabinsk, Russia. There are reports of injuries and damage, but how much is unclear right now. Give it a day and we will probably have a good idea of the scale of this event, and probably fragments of the meteor itself.
A lot of vehicles in Russia carry dashcams, and videos of the event are rapidly showing up on YouTube. It is quite spectacular, the bright fireball saturating the closer cameras.
I have seen meteoric airbursts, but nothing on this scale. It is impressive, and a bit scary to be reminded that this can happen. This even almost certainly has nothing to do with the close approach of asteroid 2012 DA14 tomorrow, but I am sure some people will make a connection. The conspiracy theorists will probably go further, perhaps much further, it should make amusing reading.
Update: A link to a collection of videos and photos of the damage here. Midway down is a vid from a warehouse security camera of a loading bay door blown inwards by the blast wave.
A dashcam video of a meteor airburst over ChelyabinskWarehouse loading bay door blown inwards by meteor blast wave
This is a recoding of a Keck Observatory Astronomy Talk given by Dr. Günter Hasinger, Astronomer and Director of the University of Hawaii Institute for Astronomy. His talk, ‘Black Holes ad the Fate of the Universe’, was given on November 20, 2012 at the Gates Performing Arts Center at Hawaii Preparatory Academy, part of the W. M. Keck Observatory public lecture series.
It’s a little bit of the story of the Universe from beginning to end,” said Dr. Hasinger. “What role do black holes have on the fate of the universe, what are they, and how we can understand them better?”
A team of astronomers from the University of California, Berkeley and the University of Hawaii at Manoa has found that 17 percent of all sun-like stars have planets one to two times the diameter of Earth in close orbits. The finding, based on an analysis of the first three years of data from NASA’s Kepler mission and the W. W. Keck Observatory on the summit of Mauna Kea, Hawaii, was announced at the American Astronomical Society meeting in Long Beach, California this week.
While other studies had shown that planets around stars are common in our galaxy, until this study, it remained unclear if this is true for Earth-size planets.
The fraction of sun-like stars having planets of different sizes, orbiting within one-fourth of the Earth-sun distance (0.25 AU) of the host star. Image credit: Erik Petigura, Geoff Marcy, Andrew Howard,The team consists of UC Berkeley graduate student Erik Petigura, former UC Berkeley postdoctoral fellow Andrew Howard, now on the faculty of the UH Manoa Institute for Astronomy, and UC Berkeley professor Geoff Marcy.
To find planets, the Kepler space telescope repeatedly images 150,000 stars in a small region of the sky. It looks for a tiny dip in each star’s brightness that indicates a planet is passing in front of it, much like Venus passed between Earth and the sun last summer.
We took a census of the planets detected by the Kepler Space Telescope,” said Howard. “Erik Petigura wrote a new pipeline to detect the shallow dimmings of Earth-size planets in Kepler photometry. With his efficient and well-calibrated pipeline we could confidently report the size distribution of close-in planets down to Earth-size. The result is that Earth-size planets are just a common as planets twice Earth size. Remarkable.”