New Record: Keck Observatory Measures Most Distant Galaxy

W. M. Keck Observatory press release…

A team of astrophysicists using the W. M. Keck Observatory in Hawaii has successfully measured the farthest galaxy ever recorded and more interestingly, captured its hydrogen emission as seen when the Universe was less than 600 million years old. Additionally, the method in which the galaxy called EGSY8p7 was detected gives important insight into how the very first stars in the Universe lit-up after the Big Bang. The paper will be published shortly in the Astrophysical Journal Letters.

Galaxy EGSY8p7
EGSY8p7 is the most distant confirmed galaxy whose spectrum obtained with the W. M. Keck Observatory places it at a redshift of 8.68 at a time when the Universe was less than 600 million years old. Credit: Adi Zitrin, California Institute of Technology
Using Keck Observatory’s powerful infrared spectrograph called MOSFIRE, the team dated the galaxy by detecting its Lyman-alpha emission line – a signature of hot hydrogen gas heated by strong ultraviolet emission from newly born stars. Although this is a frequently detected signature in galaxies close to Earth, the detection of Lyman-alpha emission at such a great distance is unexpected as it is easily absorbed by the numerous hydrogen atoms thought to pervade the space between galaxies at the dawn of the Universe. The result gives new insight into cosmic reionization’, the process by which dark clouds of hydrogen were split into their constituent protons and electrons by the first generation of galaxies.

“We frequently see the Lyman-alpha emission line of hydrogen in nearby objects as it is one of most reliable tracers of star-formation,” said California Institute of Technology (Caltech) astronomer, Adi Zitrin, lead author of the discovery paper. “However, as we penetrate deeper into the Universe, and hence back to earlier times, the space between galaxies contains an increasing number of dark clouds of hydrogen which absorb this signal.”

Recent work has found the fraction of galaxies showing this prominent line declines markedly after when the Universe was about a billion years old, which is equivalent to a redshift of about 6. Redshift is a measure of how much the Universe has expanded since the light left a distant source and can only be determined for faint objects with a spectrograph on a powerful large telescope such as the Keck Observatory’s twin 10-meter telescopes, the largest on Earth.

Continue reading "New Record: Keck Observatory Measures Most Distant Galaxy"

Scientists at Keck Measure Farthest Galaxy Ever

Keck again holds the record, for the moment at least, of the farthest galaxy ever observed. It is a record that we have been passing back and forth with the neighboring Subaru Telescope for some years now. We currently have the advantage of MOSFIRE, a fantastic spectrograph to discover these objects. I expect our hold on this title will be transitory, there are candidate objects that may even be somewhat further away and back in time.

EGS-zs8-1, the farthest confirmed galaxy observed to date. Credit: NASA, ESA, P. Oesch and I. Momcheva (Yale), and the 3D-HST and HUDF09/XDF teams
Why try to observe these galaxies? They tell us a great deal about the formation of the first stars and galaxies after what astronomers call the “Dark Ages”, a period of time after the Big Bang when light could not travel through the galaxy, absorbed by a fog of neutral hydrogen. These first stars and galaxies ionized this hydrogen, creating the transparent universe we see today. By studying these galaxies we learn a great deal about how the universe we see today came to be.

W. M. Keck Observatory press release

An international team of astronomers, led by Yale and the University of California, Santa Cruz, pushed back the cosmic frontier of galaxy exploration to a time when the Universe was only five percent of its present age. The team discovered an exceptionally luminous galaxy more than 13 billion years in the past and determined its exact distance from Earth using the powerful MOSFIRE instrument on the 10-meter Keck I telescope at the W. M. Keck Observatory in Hawaii. These observations confirmed it to be the most distant galaxy ever measured, setting a new record. The findings are being published in Astrophysical Journal Letters today.

Continue reading “Scientists at Keck Measure Farthest Galaxy Ever”

International Team on Keck Observatory Strengthens Big Bang Theory

W. M. Keck Observatory press release

An international team of scientists using the most powerful telescope on Earth has discovered the moments just after the Big Bang happened more like the theory predicts, eliminating a significant discrepancy that troubled physicists for two decades. The discovery will be published in the international journal Astronomy & Astrophysics on June 6.

Stellar Lithium
The image illustrates the detailed modelling of a small piece of the surface of an old metal-poor star used to derive its abundance of lithium-6. Image credit Karin Lind, Davide De Martin.
One of the most important problems in physics and astronomy was the inconsistency between the lithium isotopes previously observed in the oldest stars in our galaxy, which suggested levels about two hundred times more Li-6 and about three to five time less Li-7 than Big Bang nucleosynthesis predicts. This serious problem in our understanding of the early Universe has invoked exotic physics and fruitless searches for pre-galactic production sources to reconcile the differences.

The team, led by Karin Lind of the University of Cambridge, has proven the decades-old inventory relied on lower quality observational data with analysis using several simplifications that resulted in spurious detections of lithium isotopes.

Continue reading “International Team on Keck Observatory Strengthens Big Bang Theory”

Keck Lecture – Dr. Brian Siana

On Thursday, May 10, 2012, Keck Observatory hosted a live webcast of an astronomy talk by Dr. Brian Siana of the University of California at Riverside. Below is the recording of that talk, which was delivered to a live audience at the Kahilu Theatre in Kamuela-Waimea, Hawaii.

The first galaxies had an extraordinary impact on the young universe. Their ultraviolet light destroyed nearly all of the atoms in the cosmos. This process, called reionization, had severe consequences for galaxies trying to form thereafter. Unfortunately, we have no idea how it happened. In galaxies today ultraviolet light cannot escape, so the first galaxies must have been very different from those we see today. Dr. Siana will describe the quest to detect these first galaxies and their impact on the early universe.