USB to ST-4 Autoguiding Adapter

The rearrangement of my astrophoto setup proceeds. If somewhat frantically in the face of the upcoming Transit of Venus. Another device has joined the toolkit, a bit of hand-wired electronica that gets the job done.

USB to ST-4 Guiding Port
A copy of Gene Nolan's USB to ST-4 guiding adapter
This particular device will allow remotely guiding of the telescope during the seven hour long event. The computer sitting beside the telescope will be controlling both a camera and the mount. Also set up on the computer is a VNC server, so I can remotely view the screen from inside. With this arrangement I can keep an eye on the whole setup, including nudging the telescope as needed to keep the Sun centered in the image. Since the mount will only be roughly polar aligned, set up during the day, I expect to get a fair amount of drift during the event.

I did not design the device this time. This would have been completely within my capability, but why do so when someone else has already done the job? This is typical within the astronomy hobby, where many designs are shared for the benefit of everyone. In this case it is the USB to ST4 adapter designed by Gene Nolan.

All I had to do was follow the schematic and download the code into the microcontroller, the device worked first time. Gene does sell kits, but I wanted to do this quickly and had everything I needed on hand except the microcontroller and opto-isolators.

The only real problem that cropped up during construction was the wrong part received for the opto-isolators. The DigiKey description read DIP-8, so I ordered it, expecting to get something that fit into the DIP socket I had already wired onto the board. When the parts arrived I found that they were indeed DIP… lead-formed DIP packages meant to be surface mounted, with chopped off leads. I ended up soldering the devices to another DIP socket, using it as a header, which then plugged into the socket on the board. It looks funny, but it works.

It did take a couple hours of downloading and installing the drivers and other useful software packages to get everything working. This includes the very useful ASCOM driver framework, and PHD Guide. Both of which I plan to use beyond the upcoming Transit of Venus to do more astrophotography.

My wife may have been a little perturbed by the testing setup strung across the kitchen table, a laptop and the heavy Losmandy head, a Canon 60D camera, all connected by a snake pit of cables. But it worked, first time, that is always nice.

SBIG ST-i Autoguider

A box in shipping and receiving with my name on it. A much awaited box. The new SBIG ST-i autoguider!

For those who are uninitiated into the mysteries of astrophotography, an autoguider is the secret to taking hours of exposures without having the manually correct the telescope position constantly. For almost two centuries, from the first time a camera was attached to a telescope, through the invention of auto-guiders, guiding was a supremely tedious task. The photographer would spend hours on end, peering through an eyepiece watching a single star, if the position of the star started to drift, he would press a button to correct the position of the telescope during the exposure. This was necessary to achieve any sort of long exposure, as the telescope, no matter how precisely made, would drift a little during the night, leaving streaks in place of pinpoint stars.

I have done this, it is no fun at all.

Then came the autoguider. A small digital camera that could take a picture of the star, then check the image for drift in the star’s position and, if necessary, send a command to the telescope to correct the position automatically. The first commercially available autoguider appeared in 1989, the Santa Barbara Instrument Group model ST-4. This little device revolutionized astrophotography, allowing far longer exposures with much less effort and much better precision.

SBIG ST-i Autoguider
The SBIG ST-i with the optional accessory kit including mount and lens
It is an ST-4 I have been using to guide my photographs for over a decade. Any of the long exposure astrophotos seen here on DarkerView have used this venerable little device. I have had some issues with it as of late. Trouble acquiring stars, struggling with the cryptic displays to lock onto a star, the unit does require a great deal of experience and intuition to return good results. Modern autoguiders are so much easier to use with far better performance. I have been looking at the advertisements with envious eyes for some time now.

No more, I have broken down and purchased the new ST-i from SBIG.

The newest, latest and greatest, just released model.

Unpacking the box I am happy with what I see. Everything looks good.

It does seem like a small device for the $595, smaller than most of my eyepeices. Fit and finish looks good. A nice small package that will be easy to mount to any of my telescopes.

I setup the software and drivers on the laptop with no issues, simply following the provided instructions. The SBIG software for the camera , CCDOps ran first time, connecting to the camera and taking a frame. You can hear the soft click of the mechanical shutter in the camera. The bias frames look quite nice, a smooth field of salt and pepper noise with no gradients or other artifacts.

Attaching the lens from the accessory kit I take a few images of wood-grain on the kitchen cabinets across from the table I am working at. Another task will be to properly evaluate the imaging performance of the camera. It does have a decent CCD in it, the specifications indicate a proper 16-bit A/D system. A real photon transfer test will reveal if that system lives up to the specifications. A subject for another post!

Wrong Size
An improper fit of a button head screw into the mounting plate on the SBIG ST-i accesory kit
I did find one problem. Someone in engineering or purchasing screwed up when setting up the accessory kit. The screws meant to secure the rings to the mounting plate do not fit into the provided recessed holes. The head is notable larger than the machined recess. This leaves the head of the screw above the surface preventing proper mounting of the whole assembly.

A Better Fit
A proper fit after modification on the SBIG-ST-i mounting kit
Not to be deterred in setting up the camera I quickly set about a solution… I clamped the screw into the chuck of my cordless drill and removed the outer edge of the head with a file. A minute or two per screw reduced the head diameter enough to fit into the recesses. The remainder of the assembly went well. The mounting appears to be very solid, with little chance for flexure and the resulting image issues that can cause.

The package offers a nice solution, on paper at least. With the included 100mm lens the camera should provide a 165 x 123 arcminute field of view, or a 2.7 x 2.0 degree field of view. The literature promises sub-arcsecond guiding accuracy with this setup, with the ability to use 7th magnitude stars with one second exposures. These are claims that will have to be checked as well. I intend to do a proper job of verifying these numbers, I expect to get many years of service out of the guider. The new camera has quite an act to follow, replacing my classic ST-4!

I also hope to be able to guide on the Sun for the Transit of Venus. I will be trying the included software as well as Dave Solar System Recorder in the coming week. I wonder if either package will be able to guide on a large, non-stellar object like the Sun, perhaps with a shorter focal length lens.

This leaves only one real question… How well does it work? Unfortunately that will have to wait for another day. In true astronomical tradition, the receipt of new astro toys invariably occurs when the weather precludes their use. In other words… I have clouds!

A writeup of the operation of the new autoguider will be another post, when the skies provide me a chance to use it.

A GPS Observing Clock

Observing Clock
A hand made GPS clock for the observing table
For years, when observing, I found myself wanting a clock on my observing table when recording observations. I have used either a wrist watch or a cell phone, but looking at these was uncomfortable as these modern devices use bright backlit LCD displays, not a nice night-vision friendly red. The cell phone also has the additional problem of using up its battery quite quickly when out of range of a digital cell tower at some remote observing site. I needed a simple desk clock for my observing setup.

Accuracy was also a question, accurate time is always important when observing. Asteroid occultations, lunar and solar eclipses, iridium flares, twilight, jovian moon transits, the list of things where accurate time is useful is long in astronomy.

The Specs

Of course being a electrical engineer makes designing and building a clock a fairly trivial exercise. But why stop there? Why not build in a few extra features…

  • Use red 7-segment LED’s and build in some type of selectable dimming mechanism.
  • Why bother setting the clock each time you set it up? Make the clock self setting and very accurate.
  • Since the clock is accurate add a serial port to allow the clock to supply accurate time to a laptop when taking astrophotos.

Continue reading “A GPS Observing Clock”

A Box ‘O Broken Telrads

The Telrad finder is one of the most useful telescope accessories ever invented. A set of glowing red rings showing you, at a glance, exactly where your telescope is pointed in the sky. I have one on each of my telescopes. The Mauna Kea VIS also equips each telescope with one of these simple devices.

They do not work so well after hitting the ground a few times.

As I have mentioned in the past, the equipment at the Mauna Kea VIS gets used hard. It is setup every single night of the year. Thousands upon thousands of people use these telescopes to see the wonders of the night sky, the first time for many. The wear and accidental damage in the darkness takes a toll.

Broken Telrads
A box full of broken Telrad finders awaiting repair
When Deb and I were last at the VIS we spent the day cleaning eyepieces and making other repairs to the ‘scopes. One of the things I found in the storeroom was a small pile of broken Telrads. Some were missing windows, many had broken battery holders, mirrors were missing and reticle holders hanging loose. Many had been patched back together with tape or hot glue, attempts to keep them working for another night.

Quite a few had reticles that were missing or melted by exposure to sunlight. The lens that focuses the reticle’s ring pattern, projecting it into the sky, will also focus sunlight on the reticle, quickly melting the thin film if a Telrad is left in the sun.

Gathering up partial and scattered parts I collected a box of finders that I can work on later. It made quite a pathetic sight, a box of broken Telrads. A couple evenings later, five of the Telrads are now rebuilt and ready to return to duty. Four more are awaiting replacement reticles before I can call them completed. I will take them back up next time we are on the mountain, but I expect we will find something else that needs to be fixed.