A Waikoloa Star Party

It started simply enough… Donna asked for suggestions, she was looking for activities the Waikoloa Village Association could share with the community. Of course I suggested a star party. Much of our small club lives in the village, this would be an easy and fun event to put together. Al we need is a date and a place.

Star Party!
A local student checks out Cliff’s 24″ telescope, photo by Bernt Grundseth
A date? Sept 23rd would offer a slim crescent Moon, Saturn, and the Milky Way overhead. The 23rd has the added benefit of being a Saturday.

A place? The Waikoloa Stables have ceased being a place with horses. There remains a nice lawn, bathrooms, and a large parking lot. The stables currently hosts a thrift shop and regular community events like the yearly Wiliwili festival.

A plan? Easy… Light refreshments, parking coordination, keiki fire dancers, the local CERT team for safety backup, a sound system, a speaker for the evening, and at least five telescopes for viewing. OK, maybe not so simple.

We can do this.

Continue reading “A Waikoloa Star Party”

Oregon Star Party 2017

Due to lucky happenstance the location for Oregon Star Party, the same location used for decades, was within the path of totality for the 2017 total solar eclipse. This provided an opportunity to both attend the star party again, and to view the eclipse.

An assortment of telescopes wait out the day at oregon Star Party 2017
An assortment of telescopes wait out the day at oregon Star Party 2017
I do enjoy the large star parties, something we do not have on the island. I had attended OSP a few years ago, the eclipse made the opportunity to attend once again very tempting.

Registration for the star party was an issue. Due to the eclipse attendance was going to be very good, so good that registration was closed within two hours of opening! I got the announcement email, then waited until I got out of a meeting to register, only to find out I was too late! I put my name on the waiting list and hoped.

With a month to go I received word that my waiting list position was opened for registration. By this time my family already had plans to camp in the Ochoco Mts. for the eclipse, no reason not to do both!

Continue reading “Oregon Star Party 2017”

Astronomers Prove What Separates True Stars from Wannabes

W. M. Keck Observatory press release

Astronomers have shown what separates real stars from the wannabes. Not in Hollywood, but out in the universe.

“When we look up and see the stars shining at night, we are seeing only part of the story,” said Trent Dupuy of the University of Texas at Austin and a graduate of the Institute for Astronomy at the University of Hawaii at Manoa. “Not everything that could be a star ‘makes it,’ and figuring out why this process sometimes fails is just as important as understanding when it succeeds.”

Dupuy is the lead author of the study and is presenting his research today in a news conference at the semi-annual meeting of the American Astronomical Society in Austin.

He and co-author Michael Liu of the University of Hawaii have found that an object must weigh at least 70 times the mass of Jupiter in order to start hydrogen fusion and achieve star-status. If it weighs less, the star does not ignite and becomes a brown dwarf instead.

How did they reach that conclusion? The two studied 31 faint brown dwarf binaries (pairs of these objects that orbit each other) using W. M. Keck Observatory’s laser guide star adaptive optics system (LGS AO) to collect ultra-sharp images of them, and track their orbital motions using high-precision observations.

“We have been working on this since Keck Observatory’s LGS AO first revolutionized ground-based astronomy a decade ago,” said Dupuy. “Keck is the only observatory that has been doing this consistently for over 10 years. That long-running, high-quality data from the laser system is at the core of this project.”

Continue reading “Astronomers Prove What Separates True Stars from Wannabes”

Dwarf Star 200 Light Years Away Contains Life’s Building Blocks

W. M. Keck Observatory press release

Many scientists believe the Earth was dry when it first formed, and that the building blocks for life on our planet — carbon, nitrogen and water — appeared only later as a result of collisions with other objects in our solar system that had those elements.

Keck in the Dawn
The twin domes of Keck Observatory lit by the first rays of dawn
Today, a UCLA-led team of scientists reports that it has discovered the existence of a white dwarf star whose atmosphere is rich in carbon and nitrogen, as well as in oxygen and hydrogen, the components of water. The white dwarf is approximately 200 light years from Earth and is located in the constellation Boötes.

Continue reading “Dwarf Star 200 Light Years Away Contains Life’s Building Blocks”

Distanced from Reality

On Monday I tuned back into the TMT contested case hearing, it is a soap opera that has become rather addictive over the last few months. I will often keep the video feed up in the corner of my monitor, attempting to pick up the more interesting bits through the day.

Michael Lee
Michael Lee testifies at the TMT contested case hearing Jan 24, 2017
Mr. Lee claims to be a papakilohoku, a star priest, I tuned into his testimony with some interest. As an amateur astronomer who has spent countless nights under the stars observing with hand made telescopes, or simply my unaided eyes, I am very familiar with the sky. I hoped he would relate some interesting Hawaiian sky lore while on the stand, a new legend or two. What I heard instead was a mangled version of astronomy that would embarrass any ancient Polynesian navigator.

Mr. Michael Lee was offered as a witness by Harry Fergerstrom, one of the more extreme participants in the ongoing contested case hearing. It is no surprise that this witness would espouse some of the more interesting claims made against the TMT project. I expected some wild claims, I was surprised at just how wild.

Continue reading “Distanced from Reality”

Cosmic Neighbors Inhibit Star Formation, Even in the Early-Universe

W. M. Keck Observatory press release

Galaxy cluster MACS J0416
Massive galaxy cluster MACS J0416 seen in X-rays (blue), visible light (red, green, and blue), and radio light (pink). Credit: NASA, CXC, SAO, G.Ogrean, STSCI, NRAO, AUI, NSF
The international University of California, Riverside-led SpARCS collaboration has discovered four of the most distant clusters of galaxies ever found, as they appeared when the Universe was only four billion years old. Clusters are rare regions of the Universe consisting of hundreds of galaxies containing trillions of stars, as well as hot gas and mysterious Dark Matter. Spectroscopic observations from the W. M. Keck Observatory on Maunakea, Hawaii and the Very Large Telescope in Chile confirmed the four candidates to be massive clusters. This sample is now providing the best measurement yet of when and how fast galaxy clusters stop forming stars in the early Universe.

“We looked at how the properties of galaxies in these clusters differed from galaxies found in more typical environments with fewer close neighbors,” said lead author Julie Nantais, an assistant professor at the Andres Bello University in Chile. “It has long been known that when a galaxy falls into a cluster, interactions with other cluster galaxies and with hot gas accelerate the shut off of its star formation relative to that of a similar galaxy in the field, in a process known as environmental quenching. The SpARCS team have developed new techniques using Spitzer Space Telescope infrared observations to identify hundreds of previously-undiscovered clusters of galaxies in the distant Universe.”

Continue reading “Cosmic Neighbors Inhibit Star Formation, Even in the Early-Universe”

New Hypervelocity Binary Star Challenges Dark Matter, Stellar Acceleration Models

W. M. Keck Observatory press release

A team of astronomers at the Friedrich Alexander University led by Péter Németh has discovered a binary star moving nearly at the escape velocity of our galaxy. There are about two dozen so-called hypervelocity stars known to be escaping the galaxy. While all of them are single stars, PB3877 is the first wide binary star found to travel at such a high speed. Additionally, the results of the new study challenge the commonly accepted scenario that hypervelocity stars are accelerated by the supermassive black hole at the galactic center. The findings are being published in the Astrophysical Journal Letters today.

PB3877 Binary
PB3877 is a hyper-velocity wide binary star zooming through the outskirts of the Milky Way galaxy. This image shows its current location as well as our Sun.
The team, in collaboration with researchers from the California Institute of Technology, showed the binary cannot originate from the Galactic Center, and no other mechanism is known that is able to accelerate a wide binary to such a high velocity without disrupting it. They therefore hypothesized there must be a lot of dark matter to keep the star bound to the Milky Way galaxy; or the binary star, PB3877, could be an intruder that has been born in another galaxy and may or may not leave the Milky Way again.

PB3877 was first reported to be a hyper-velocity, hot compact star, when it was discovered form the Sloan Digital Sky-Survey (SDSS) data in 2011. New spectroscopic observations were done with the 10 meter Keck II telescope at W. M. Keck Observatory on Maunakea, Hawaii and with the 8.2 meter Very Large Telescope (VLT) of the European Southern Observatory (ESO) in Chile.Caltech astronomers Thomas Kupfer and Felix Fürst observed PB3877 with the ESI Instrument fitted on the Keck II telescope.

“When we looked at the new data, much to our surprise, we found weak absorption lines that could not come from the hot star,” Kupfer said. “The cool companion, just like the hot primary, shows a high radial velocity. Hence, the two stars form a binary system, which is the first hyper-velocity wide binary candidate.”

Continue reading “New Hypervelocity Binary Star Challenges Dark Matter, Stellar Acceleration Models”

Fossil Star Clusters Reveal Their Age

W. M. Keck Observatory press release

Using a new age-dating method and the W. M. Keck Observatory on Maunakea, an international team of astronomers have determined that ancient star clusters formed in two distinct epochs – the first 12.5 billion years ago and the second 11.5 billion years ago. These results are being published in Monthly Notices of the Royal Astronomical Society.

Cosmic Timeline of Globular Clusters
A cosmic timeline showing the birth of the Universe in a Big Bang 13.7 billion years ago to the present day. Credit: NASA/CXC/SAO and A. Romanowsky
Although the clusters are almost as old as the Universe itself, these age measurements show the star clusters – called globular clusters – are actually slightly younger than previously thought.

“We now think that globular clusters formed alongside galaxies rather than significantly before them,” research team leader, Professor Duncan Forbes of Swinburne University of Technology said.

The new estimates of the star cluster average ages were made possible using data obtained from the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey, which was carried out on Keck Observatory’s 10-meter, Keck II telescope. Observations were carried out over years using the powerful DEIMOS multi-object spectrograph fitted on Keck II, which is capable of obtaining spectra of one hundred globular clusters in a single exposure.

DEIMOS breaks the visible wavelengths of objects into spectra, which the team used to reverse-engineer the ages of the globular clusters by comparing the chemical composition of the globular clusters with the chemical composition of the Universe as it changes with time.

Continue reading “Fossil Star Clusters Reveal Their Age”

Scientists Discover Brightest Early Galaxy and Likely First Generation Stars

W. M Keck Observatory press release

Astronomers using several of the largest telescopes on Earth and space have discovered the brightest galaxy yet found in the early Universe and have strong evidence that examples of the first generation of stars lurk within it. The results have been accepted for publication in The Astrophysical Journal.

Early Galaxy
An artist’s impression of a galaxy in the early universe, credit: David Sobral
The team’s expansive study was made using the 10-meter W. M. Keck Observatory, the 8.2-meter ESO Very Large Telescope and Subaru Telescope, as well as the NASA/ESA Hubble Space Telescope. The team discovered — and confirmed — a number of surprisingly bright very young galaxies.

A team — led by David Sobral from the Institute of Astrophysics and Space Sciences, the Faculty of Sciences of the University of Lisbon in Portugal, and Leiden Observatory in the Netherlands — peered back into the ancient Universe, to the reionization period approximately 800 million years after the Big Bang. Instead of conducting a narrow and deep study of a small area of the sky, the team broadened their scope to produce the widest survey of very distant galaxies ever attempted.

Continue reading “Scientists Discover Brightest Early Galaxy and Likely First Generation Stars”

Supernova Ejects Galaxy’s Fastest Star

W. M. Keck Observatory press release

Scientists using the W. M. Keck Observatory and Pan-STARRS1 telescopes on Hawaii have discovered a star that breaks the galactic speed record, traveling with a velocity of about 1,200 kilometers per second or 2.7 million miles per hour. This velocity is so high, the star will escape the gravity of our galaxy. In contrast to the other known unbound stars, the team showed that this compact star was ejected from an extremely tight binary by a thermonuclear supernova explosion. These results will be published in the March 6 issue of Science.

US 708 Supernova Ejected Star
An artist impression of the mass-transfer phase followed by a double-detonation supernova that leads to the ejection of US 708. Credit: ESA/Hubble, NASA, S. Geier
Stars like the Sun are bound to our Galaxy and orbit its center with moderate velocities. Only a few so-called hypervelocity stars are known to travel with velocities so high that they are unbound, meaning they will not orbit the galaxy, but instead will escape its gravity to wander intergalactic space.

A close encounter with the supermassive black hole at the centre of the Milky Way is typically presumed the most plausible mechanism for kicking these stars out of the galaxy.

A team of astronomers led by Stephan Geier (European Southern Observatory, Garching) observed the known high-velocity star know as US 708 with the Echellette Spectrograph and Imager instrument on the 10-meter, Keck II telescope to measure its distance and velocity along our line of sight. By carefully combining position measurements from digital archives with newer positions measured from images taken during the course of the Pan-STARRS1 survey, they were able to derive the tangential component of the star’s velocity (across our line of sight).

Putting the measurements together, the team determined the star is moving at about 1,200 kilometers per second – much higher than the velocities of previously known stars in the Milky Way galaxy. More importantly, the trajectory of US 708 means the supermassive black hole at the galactic center could not be the source of US 708’s extreme velocity.

Continue reading “Supernova Ejects Galaxy’s Fastest Star”